Strong And long-term Partnership

Brabender®

... where quality is measured.

قریب به نیـم قرن نماینده انحصاری Brabender در ایــــران www.brabender.com

IranGrain Conference 2nd Annual Grain Conference May 10 & 11, 2022 Tehran, Iran

Glutopeak Technology to Determining Quality of Flour & Gluten

Wheat Quality: Description and Effect

3

Definition Wheat Quality

- Different wheats/flours for different products
- Same protein content but different products/applications

- Composition: list of components
- Functionality: the quality of being suited to serve a purpose well; practicality

"Functional properties of food proteins are those physical and chemical properties which affect the behaviour of proteins in food systems during processing, storage, preparation, and consumption" (Kinsella, 1976) Crit Rev Food Sci Nutr, 1976, 7, 219-280.

Definition Wheat Quality

GLIADIN extensibility viscosity

+

A

GLUTENIN elasticity tenacity

=

GLUTEN visco-elasticity

Excess of Gliadins Too tensile, weak dough

Excess of Glutenins Too stiff, strong dough

ELASTICITY The gluten netw

The gluten network enables the product to keep its shape during mechanical stresses

It is able to resume its normal shape after being stretched

The gluten network deforms instead of breaks

EXTENSIBILITY

Copyright © Brabender® GmbH & Co. KG

Effect of the Gluten Composition

	Con	nposition	ł
Durum Wheat Semolina		[%]	÷.
	Protein	10 - 16	1
	Fiber	4 - 6	i.
	Ash	0.90 - 1.7	1
	Starch	75 - 78	i.
Common Wheat Flour		[%]	I I
	Protein	9 - 15	+
	Fiber	4 - 6	i.
	Ash	0.55 - 1.7	1
	Starch	78 - 80	i

Pasta

Pagani, unpublished

Who cares about wheat quality?

Who cares about wheat quality?

Each sector/industry wants to use the optimal raw materials (grain – flour) for its needs, or produce end products (bread, pasta) with consistently high quality.

Who cares about wheat quality?

- Rheological "fingerprint" of the flour
- Time, sample size, reliability and predictability

Test	Time*	Sample amount	Influence of the analyst
Farinograph	~45 min**	50g, 300g	low
Alveograph	~40 min	250g	high
Extensograph	~150 min**	300g	medium
Rheofermentometer	~200 min	300g	low
Gluten Index	~15 min	10g	high
Glutograph	~20 min	10g	high
Kieffer Test	~60 min**	10g	high
Mixolab	~60 min**	50g	low

* including sample preparation and cleaning

** including the step for the determination of the optimal water absorption

The GlutoPeak Procedure

The GlutoPeak Procedure

Features of the GlutoPeak and the process

- Useful for flour, whole meal flour, baking mixes, vital gluten and more
- Supplementary to the Brabender 3-Phase-System
- Creates a rheological "fingerprint" of the test material
- Paddle speed up to 3300 min⁻¹
- Quick method (30 s 10 min.)
- Small sample amount (2,5-12 g)
- No sample preparation necessary
- Raw material-dependent methods and evaluations available
- Simple handling

Brabender

.. where quality is measured

Effect on the Gluten Network

- Preparing of a slurry with flour and water during low speed
- Increased energy input due to increase in speed

Effect on the Gluten Network

- Preparing of a slurry with flour and water during low speed
- Increased energy input due to increase in speed
- After a time (dependent on the property of the sample), the gluten aggregates
- A uniform gluten network is formed, which results in a strong increase in torque

Effect on the Gluten Network

- Preparing of a slurry with flour and water during low speed
- Increased energy input due to increase in speed
- After a time (dependent on the property of the sample), the gluten aggregates
- A uniform gluten network is formed, which results in a strong increase in torque

(c)

• Further mixing destroys the network, the torque decreases

The GlutoPeak Procedure

Description of the Evaluation

Peak Maximum Time (PMT) [s]

- → Time until the gluten aggregates and the highest torque, before the gluten get damaged
- \rightarrow Correlate with the Gliadin content (R = 0,70) *)

Peak Maximum Torque (BEM) [BU]

- \rightarrow Torque when the peak happened
- \rightarrow Correlate with the Glutenin content (R = 0,72) *)

Torque [BU]

- \rightarrow 15 s before Maximum (AM)
- \rightarrow 15 s after Maximum (PM)

Energy (cm²)

- \rightarrow Area under the curve
- \rightarrow Correlate with the Glutenin content (R = 0,77) *)

Brabender

60.00

40.00 30,00

20,00

10 S0.00

GlutoPeak versus Protein Content

Similar protein content but different bread-making performance

Elastic gluten

•

- Good volume increase due to gas expansion in the fermentation and baking process
- Soft crumb
- Tough gluten (rigid)
- The fermentation gases could not expand through the strong gluten
- Limited volume increase

GlutoPeak versus Wet Gluten Content

Similar wet gluten content but different bread-making performance

- Elastic gluten
- Good volume increase due to gas expansion in the fermentation and baking process
- Soft crumb
- Tough gluten (rigid)
- The fermentation gases could not expand through the strong gluten
- Limited volume increase

GlutoPeak Methods & Applications

Method: Rapid Flour Check

Wheat flour with approx. 11 – 15 % protein

Method	
Flour	9 g
Liquid (dist. water)	9 g
Temperature	36 °C
Speed	2750 min ⁻¹
Time (max. approx.)	300 s

Correlation

- Water absorption
- Protein content
- Wet gluten content
- W-value (Alveograph)

 \rightarrow Quick raw material analysis with wheat flour/grain

GlutoPeak Methods & Applications

Method: Rapid Gluten Check

Method		
Vital Gluten	2,1 g	
Liquid (dist. water)	4,4 g	
Temperature	36 °C	
Speed	500 min ⁻¹ 0 min ⁻¹ 3.300 min ⁻¹	(1 min) (2 min) (7 min)
Time	< 10 min	

Gluten with similar rheological behaviours

Gluten with different rheological behaviours

(ttz Bremerhaven)

 \rightarrow Quick quality control of dried (vital) gluten and ist properties for the baking process

Method: Whole Meal Flour (U.S.)

Method	
Whole meal flour	8,0 g
Liquid (CaCl ₂ Solution, Concentration: 55,49 g/l)	10,0 g
Temperature	20 °C
Speed	3.000 min ⁻¹
(Wang et. al., 2018)	

Peak Maximum Torque of White Flour and Whole Meal Flour

Effects of particle size:

- The particle size has a significant influence on the results
- The methods has a higher accuracy if the particle size is smaller

Method: Suni-bug Damage

Suni-bug Method		
	1. Test	2. Test
Whole meal flour	9g	9g
Dist. Water	10g	10g
Temperature	40 °C	40 °C
Speed	500 min ⁻¹ (60 s)	500 min ⁻¹ (60 s)
	0 min⁻¹ (150 s)	0 min-1 (600 s)
	2.750 min ⁻¹ (150 s*)	2.750 min-1 (150 s*)

* Stop latest 15s after the peak

 \rightarrow High reduction of the peak maximum \rightarrow Tendency for suni-bug damage

Low/no tendency for suni-bug damage

Method for Wafer Flour (Low Protein Flour) Project Haas-Bühler AG Austria & Brabender Germany

Method Development Wafer Flour

Challenges in Wafer Production

- Gluten (also in flours with low protein content) can lead to blockages in the dosing nozzles
- Deviations in flour quality lead to non-optimally filled wafer moulds
- Conventional flour analyses (ICC) take up a relatively large amount of time

Task of the Project

- Optimization of the flour analysis
- Development of a fast method with good correlations to common measurement methods

Project Description

All test trials (Analysis & baking) were done in the Haas-Bühler Technology Center Leobendorf, Austria

Method Development Wafer Flour

Description of the Baking Trials

Laboratory baking pan and a corresponding core plate (Wafer cone baking oven)

"Breath"

- Mould heating temperature : 180 °C
- Core heating temperature: 190 °C
- Sample size: 7 ml
- After closing the oven:
 - o 2 s open
 - o 2 s close
 - o 2 s open
 - o 2 s close
- Baking time: 80 s
- Cooling down 10 min. at room temperature
- Foil sealed storage at 8 °C

Method Development Wafer Flour

Texture Analysis of the Waffles

Measurements were done with a TA.XT.plus Texture Analyze (Stable Micro Systems)

- Measurement of the force necessary to produce a fracture
- Force transducer: spherical
- Pressing the ball into the wafer opening
- Recorded texture parameters
 - Distance travelled by the ball
 - Force required to break the wafer
- 10 wafer cones were tested per flour

Results and Discussion Project Haas-Bühler AG Austria & Brabender Germany

Results and Discussion

Evaluation with the GlutoPeak RFC Method

No optimal correlations to the reference analysis (ICC)

- Protein R = 0,85
- Wet gluten R = 0,75
- Developed for wheat flours with approx. 11 15 % protein
- Protein content of the project flours: 9,0 11,4 (15) %

Optimisation of the existing method

Korrelationen

- Water absorption
- Protein content
- Wet gluten content

Method	RFC	LPC ^{*)}
Flour	9 g	11 g
Liquid (dist. water)	9 g	12 g
Temperature	36 °C	35 °C
Speed	2750 min ⁻¹	2500 min ⁻¹
Time (max., approx.)	300 s	300 s
	*)	Low Protein Check

Project Participants

Mr. Emmerich Haimer

Mrs. Zuleyka Rodríguez (Application Technology Wafer)

zuleyka.rodriguez@buhlergroup.com

FHW Franz Haas Waffelmaschinen GmbH, Leobendorf, Austria

(Planning, carrying out and evaluating the experiments in the Haas-Bühler technical centre)

Mr. Markus Löns

markus.loens@brabender.com

Brabender GmbH & Co. KG, Duisburg, Deutschland (GlutoPeak and laboratory technology)

"... a valuable alternative to the ICC methods..." "... the flexibility of the GlutoPeak with its low sample volume and short test time proves to be a suitable alternative for the characterisation of wafer flours." (Bühler, 2020)

Rapid analytics in the value chain

- Alessandra Marti (PhD)
- M. Ambrogina Pagani (PhD)
- Silvia Grassi (Dr.)

University of Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), Italien

- Sanaa Ragaee (Dr.), University of Guelph, Kanada
- Sabrina Maria Geißlitz (Dr), Technische Universität München, Deutschland
- Aylin Sahin (Dr.), Uinversity Colledge Cork, Irland

... die ganze Stärke der Natur!